智能制造的概念最早起源于上世纪 80 年代末。它是基于现代传感技术、网络技术、自动化技术和人工智能等,通过感知、人机交互、建模与模拟,形成决策,通经执行与反馈,实现产品设计过程、生产过程、企业管理与服务的智能化。
智能制造的起源可以追溯到工业革命时期。从蒸汽时代的工业 1.0 ,到电气化时代的工业 2.0 ,再到信息时代的工业 3.0 ,制造业不断发展和升级。在这个过程中,各国和地区为了更好地生存和发展,不断进行生产模式的变革。
20 世纪 50 年代前,制造系统主要是传统制造、机械与手工业结合。随着时间的推移,到 20 世纪 80 年代,智能制造 IM 1.0 出现,追求产品质量、机械化、劳动密集型。进入 21 世纪 10 年代,IM 2.0 版本出现,强调知识和服务、柔性化和服务化兼顾、信息服务型。
在发展历程中,智能制造系统是 1988 年日本通产省提出的一种智能制造方案,1989 年形成了一份国际合作项目正式文件。1990 年代,IMS 项目对未来工厂的定义,大体上已经涵盖了当今智能制造的主要内容。该项目得到了日本、美国、欧盟、韩国、瑞士、墨西哥等国政府的大力支持,数百家企业、高校和研究机构参与其中,持续不断地促进了 IMS 的开发与应用。
智能制造的发展是一个不断演进的过程,从传统制造到智能制造,每一次变革都带来了生产效率的提升、产品质量的改善以及生产模式的创新。
生产智能化是智能制造的核心特点之一。自动化生产成为主流,各类智能机器人和自动化设备广泛应用于生产线上,替代了大量重复性、高强度的人工劳动,不仅减少了人工干预,还显著提高了生产效率。智能化控制技术的应用,让生产过程能够根据预设的参数和实时的生产情况进行自动调整和优化,确保产品质量的稳定性和一致性。同时,设备性能不断提升,具备了自我诊断、自我修复和远程监控的能力,大大降低了设备故障带来的生产中断风险。例如,一些先进的制造工厂通过引入智能生产系统,生产效率提升了 30% 以上。
产品智能化使得产品具备了感知、通信和追溯能力。产品能够感知周围环境和自身状态,并通过通信技术与其他设备或系统进行交互。用户在使用产品的过程中,可以根据自身需求定义产品的功能和价值,实现个性化定制。例如,智能家电能够根据用户的使用习惯自动调整工作模式,智能汽车可以根据路况和驾驶员的偏好提供最佳的驾驶方案。产品智能化还使得产品的追溯变得更加容易,从原材料采购到生产加工,再到销售和使用,整个过程的信息都可以被准确记录和追踪,保障了产品的质量和安全。
管理智能化充分利用数据的优势,大大提高了管理的准确性、高效性和科学性。通过收集和分析生产、销售、供应链等各个环节的数据,管理者能够准确把握企业的运营状况,及时发现潜在问题,并做出科学的决策。例如,利用大数据分析预测市场需求,从而合理安排生产计划,避免库存积压和缺货现象的发生。同时,智能化的管理系统能够实现流程的自动化和优化,提高工作效率,降低管理成本。
服务智能化强调制造企业向生产服务型转型,实现线上线下融合的服务模式。企业不再仅仅关注产品的销售,而是通过提供全方位的服务来增加产品的附加值。在线上,通过智能客服和远程诊断等手段,及时为用户解决问题;在线下,建立完善的售后服务网络,提供快速响应和高效的维修保养服务。这种融合的服务模式不仅提高了用户满意度,还增强了企业的市场竞争力。例如,一些制造企业通过搭建线上服务平台,为用户提供个性化的产品使用培训和技术支持,有效提升了品牌形象。
传统生产方式在资源利用方面存在诸多问题。人力方面,由于缺乏先进的技术和管理手段,工人的工作效率普遍不高,大量的人力被浪费在重复性的低价值劳动上。而且,人员调配不够灵活,容易出现人员闲置或过度劳累的情况。物力方面,原材料的采购和存储往往缺乏精确的规划,导致过多的原材料积压,占用大量资金和仓储空间。同时,生产过程中的能源消耗也较高,未能实现有效的节能控制,造成能源的不必要浪费。例如,在传统的制造业中,由于生产计划不准确,经常会出现大量剩余的零部件,这些零部件最终可能会因为产品更新换代而被废弃,造成严重的资源浪费。
传统生产模式在生产速度和质量控制方面表现不佳。生产速度方面,由于生产流程的僵化和设备的老化,生产周期通常较长,无法快速响应市场需求的变化。质量控制方面,主要依赖人工检验,不仅效率低下,而且容易出现漏检和误检的情况,导致产品质量不稳定,次品率较高。例如,在传统的汽车生产线上,组装一辆汽车可能需要数天时间,而在现代的智能制造工厂中,这个时间可以大幅缩短。此外,传统生产中对质量问题的追溯也较为困。