21 世纪以来,随着人工智能、大数据、云计算、物联网等新一代信息技术的快速发展及应 用,“智能制造”概念进一步深化。根据我国工信部 2016 年出台的《智能制造发展规划 (2016-2020 年)》中定义,“智能制造是基于新一代信息技术与先进制造技术深度融合, 贯穿于设计、生产、管理、服务等制造活动各个环节,具有自感知、自决策、自执行、自适 应、自学习等特征,旨在提高制造业质量、效益和核心竞争力的先进生产方式。”2014 年, 美国能源部将“智能制造”定义为,“智能制造是先进传感、仪器、监测、控制和过程优化 的技术和实践的组合,它们将信息和通信技术与制造环境融合在一起,实现工厂和企业中能 量、生产率、成本的实时管理。”
无论从哪个视角出发,今天各国对“智能制造”的理解都不再局限于生产过程或单体智能, 而是扩展到产业价值链的各个环节、包含企业活动的方方面面,也不再单方面强调数智技术本身的应用价值,而是更加重视数智技术与先进制造等跨领域技术的深度融合和实践创新。由全新定义出发,智能制造在实践中的运用和渗透将帮助企业实现在产品、生产、管理和服务四大方面的智能化升级。
产品智能化 :即是将传感器、处理器、存储器、通信模块、传输系统嵌入产品,使得产品具 备动态存储、感知和通信能力,成为物联网连接的终端,从而实现产品“可追溯、可识别、 可定位”功能。根据 Transforma Insights 研究显示,到 2030 年这些物联网终端数量将增 长到 241 亿个,复合年增长率为 11%。
制造智能化 :包括制造载体智能化和制造过程智能化两个层面:制造载体智能化,包括单机 智能化,以及单机设备的互联而形成的智能制造单元、智能产线、智能车间、智能工厂等;制造过程智能化,则是通过数智技术和先进制造技术的融合应用,使得制造过程中所涉及的各个流程、生产要素以及上下游企业,以用户价值为中心,实现网络化协同和柔性化生产。
管理智能化 : 随着技术融合不断深入,制造企业获取数据的实时性、完整性、准确性不断提 高,结合智能化分析技术可以帮助企业提升资源管理、能源管理、供 应链管理、订单管理、 设备管理等方面的决策效率,变被动管理为主动管理和预防性管理,使得管理更准确、更高效、更智能。
服务智能化 : 在产品智能化的基础上,企业与终端用户交互更为直接,为用户提供更好的服 务体验将成为智能制造的重要组成和价值增量,越来越多的制造企业将从生产型制造向服务 型制造转型,制造与服务的边界逐渐消弭。
一是降造企业的综合成本。 例如,通过机器代人或人机协同方式提高劳动生产效率,减少人工成本;利用视觉算法等手段提升检测一致性和稳定性,降低产品不良品率,减少因质 量问题造成的经济损失;物联网、大数据、区块链等技术应用加速产融结合,精准刻画企业 经营行为、评估企业资产状况,为供应链企业提供更低价格的信贷资金;依据市场数据反馈 合理安排要素投入,减少物料浪费,或施行智能库存管理来降低仓储成本等。
二是提质增效。 例如,数据驱动代替经验判断,全面优化生产流程,改善制造工艺,提高生 产效率;科学高效排产,提高设备利用率;集成数智技术提高生产执行精度,确保产品质量。
三是减少能源资源消耗。 例如,通过物联网连接设备可以实时在线监测和控制能源和资源使 用情况,提高能源资源利用效率;利用智能化节能减排设备或解决方案替换落后产能和生产 工艺,实现绿色生产。
四是提升用户体验。 例如,数智技术应用打通产业链上下游,实现需求端与设计端、制造端 的直接对接,对复杂的市场动态进行数据分析和预测,准确把握市场机会,快速进行产品创 新,实现敏捷制造和精益生产,响应市场变化和用户个性化需求;通过在价值链各个环节增 加与用户交互节点,鼓励用户全程参与产品生产过程,为用户的最佳体验不断迭代产品,提升产品附加价值;基于产品智能化,通过与环境、用户交互,产品可自动回传运行和环境数 据,通过数据监控和分析,为用户提供远程的预防性运维服务。
五是重塑生产方式。 数智技术和先进制造技术的融合应用将会带来生产模式的创新和变革, 推动传统制造企业从大规模生产向定制化生产转变,企业从单纯的制造商向服务端衍生,而价值创造过程也将从传统单向链式过程转向网络化协同共创模式。
互联互通社区专注于IT互联网交流与学习,旨在打造最具价值的IT互联网智库中心,关注公众号:互联互通社区,每日获取最新报告并附带专题内容辅助学习。
方案咨询、架构设计、数字化转型、中台建设、前沿技术培训与交。